Object cosegmentation using deep Siamese network

نویسندگان

  • Prerana Mukherjee
  • Brejesh Lall
  • Snehith Lattupally
چکیده

Object cosegmentation addresses the problem of discovering similar objects from multiple images and segmenting them as foreground simultaneously. In this paper, we propose a novel end-to-end pipeline to segment the similar objects simultaneously from relevant set of images using supervised learning via deep-learning framework. We experiment with multiple set of object proposal generation techniques and perform extensive numerical evaluations by training the Siamese network with generated object proposals. Similar objects proposals for the test images are retrieved using the ANNOY (Approximate Nearest Neighbor) library and deep semantic segmentation is performed on them. Finally, we form a collage from the segmented similar objects based on the relative importance of the objects. Keywords—Cosegmentation, Siamese Network, Multiscale Combinatorial Grouping, Nearest Neighbor

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Spatial-Temporal Joint Feature Representation for Video Object Detection

With the development of deep neural networks, many object detection frameworks have shown great success in the fields of smart surveillance, self-driving cars, and facial recognition. However, the data sources are usually videos, and the object detection frameworks are mostly established on still images and only use the spatial information, which means that the feature consistency cannot be ens...

متن کامل

Learning Local Image Descriptors with Deep Siamese and Triplet Convolutional Networks by Minimising Global Loss Functions

Recent innovations in training deep convolutional neural network (ConvNet) models have motivated the design of new methods to automatically learn local image descriptors. The latest deep ConvNets proposed for this task consist of a siamese network that is trained by penalising misclassification of pairs of local image patches. Current results from machine learning show that replacing this siame...

متن کامل

Image similarity using Deep CNN and Curriculum Learning

Image similarity involves fetching similar looking images given a reference image. Our solution called SimNet, is a deep siamese network which is trained on pairs of positive and negative images using a novel online pair mining strategy inspired by Curriculum learning. We also created a multi-scale CNN, where the final image embedding is a joint representation of top as well as lower layer embe...

متن کامل

Fully-Convolutional Siamese Networks for Object Tracking

The problem of arbitrary object tracking has traditionally been tackled by learning a model of the object’s appearance exclusively online, using as sole training data the video itself. Despite the success of these methods, their online-only approach inherently limits the richness of the model they can learn. Recently, several attempts have been made to exploit the expressive power of deep convo...

متن کامل

Off-Topic Spoken Response Detection Using Siamese Convolutional Neural Networks

In this study, we developed an off-topic response detection system to be used in the context of the automated scoring of nonnative English speakers’ spontaneous speech. Based on transcriptions generated from an ASR system trained on non-native speakers’ speech and various semantic similarity features, the system classified each test response as an on-topic or off-topic response. The recent succ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018